Converging evidence suggests a link between vascular dysfunction and Alzheimer’s disease (AD). This study aimed at investigating vascular changes in AD patients as well as in two transgenic AD mouse models showing amyloid beta (Aβ) pathology - APPSL and 5xFAD. To this end, we quantified immunofluorescently labeled sections from human AD patients at different Braak stages and brain sections from the two transgenic mouse lines across different time points. Most of the parameters analyzed in the cortex and the hippocampus showed a parallel progression in both species. Our data highlight the validity of the quantitative histological approach used here. Furthermore, they demonstrate that the APPSL and the 5xFAD mouse models are valuable tools to study Aβ as well as vascular-related alterations in AD.

MATERIALS AND METHODS

Tissue processing and imaging

Systematic random sets of 6-10 µm thick brain sections were immunofluorescently labeled for Aβ (6E10, Convance) and collagen IV (Abcam), imaged and quantitatively evaluated using image analysis software (Axio.Imager Z1 microscope, ImageProPlus).

<table>
<thead>
<tr>
<th>Human brain tissue</th>
<th>Mouse brain tissue</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD patients (Braak III, IV, V, VI)</td>
<td>APPSL, 5xFAD</td>
</tr>
<tr>
<td>Non-AD subjects</td>
<td>Non-transgenic (nTg)</td>
</tr>
</tbody>
</table>

Measurement of cerebral amyloid angiopathy (CAA)

Fig. 1: Exemplary measurement process of CAA in the cortex of a 12 month old APPSL mouse. (A) Composite image of 6E10 + collagen IV channels. (B) Single Aβ (6E10) labeling. (C) Modified human amyloid labeling with the low pass filter correction. (D) Inverted collagen IV mask. (E) Ultimate count of CAA (red outline).

RESULTS

Aβ accumulates in brain tissue of humans and both AD mouse models - APPSL and 5xFAD

CAA builds up with age in APPSL and 5xFAD mice

CONCLUSION

- Aβ accumulation can be detected in mouse and human using the same approach.
- CAA increases significantly in APPSL as well as in 5xFAD mice with age.
- Collagen IV levels are associated with disease progression in human and analyzed mouse models.

Meet us at Booth #207

Contact: Birgit Hutter-Paier | Director Neuropharmacology | QPS Austria GmbH | Parkring 12 | 8074 Graz, Austria | birgit.hutter-paier@qps.com | www.qpsneuro.com