Alzheimer’s Disease and related mouse models: pE3-Abeta and Tau-associated pathology

BACKGROUND

Alzheimer’s disease (AD) is a neurodegenerative disease characterized by extracellular amyloid plaques and intracellular neurofibrillary tangles. Neuritic plaques often appear in N-terminally truncated forms with a cyclic glutamate residue. pE3 Abeta exhibits cellular toxicity, presents a high self-aggregation predisposition, and promotes co-aggregation of non-modified Abeta. The current study is designed to analyze features of AD-related pathological changes in human brain that are spatially associated with pE3 Abeta immunoreactive structures, and to verify whether similar changes are present in different animal models of AD.

MATERIALS AND METHODS

Paraffin slides of AD patients as well as healthy controls and cryosections of transgenic mouse models (5xFAD, APPSL) and non-transgenic control mice were labelled by multichannel immunofluorescence to analyze the spatial relations of pE3 Abeta and ptau. Therefore, a rabbit polyclonal antibody against pE3 Abeta and a mouse monoclonal antibody (clone AT8) against pSer202/Thr205 tau were used. All samples were digitized and immunofluorescent labelling was quantified by image analysis.

RESULTS

Brain slides of AD patients show an increasing pE3 Abeta expression with progressing Braak stages. Expression of ptau is only increased in patients of Braak stage V/VI. Additionally, a significant correlation between pE3 Abeta and pSer202/Thr205 tau expression in human sections is observed (Fig.1). Depending on genotype and age, mouse models manifest different expressions of pE3 Abeta and pSer202/Thr205 tau expression over age, while APPSL mice show only a significant increase of pE3 Abeta at the age of 12 months. Furthermore, expression of pE3 Abeta and pSer202/Thr205 tau significantly correlated in both mouse models.

CONCLUSION

Correlation between pE3-Abeta and pSer202/Thr205 tau expression in human samples as well as in mouse model samples confirms an interdependent expression of pE3-Abeta and pSer202/Thr205 tau. Further studies will be required to investigate how these proteins affect each other.

Meet QPS at AAIC 2017 Booth #217

Figure 1. Pyroglutamate amyloid-β and pSer202/Thr205 tau expression in different cortical regions of AD patients' brain samples:
- differences between age groups of one genotype.
- compared to controls; # differences between age groups of one genotype.
- Correlation analysis of Aβ at the age of 12 months. Further studies will be required to investigate how these proteins affect each other.

Contact: Birgit Hutter-Paier, PhD | Director Neuropharmacology
QPS Austria GmbH | Parkring 12 | 8074 Grambach | Austria
birgit.hutter-paier@qps.com | www.qpsneuro.com