Contact Us Services

Although QPS is complying with all government regulations for social distancing and allowing employees who can, to work from home, QPS Neuropharmacology is up and running. Please feel free to contact us any time to discuss your research needs.

Welcome to QPS Neuropharmacology

QPS Neuropharmacology is the division of QPS that focuses on preclinical studies in CNS diseases, Rare Diseases and Mental Disorders. The on-site availability of highly predictive disease models and unparalleled experience with studies performed for biopharmaceutical companies of all sizes makes QPS Neuropharmacology the first choice for most CNS drug development needs.

Validated transgenic and non-transgenic in vitro and in vivo models cover most targets of Alzheimer’s Disease (AD), Parkinson’s Disease (PD), Amyotrophic Lateral Sclerosis (ALS), Frontotemporal Dementia (FTD), Niemann-Pick Disease (NPC1), Gaucher Disease, Autism Spectrum Disorder (ASD), Schizophrenia, Frontotemporal Lobar Degeneration (FTLD) and other neurodegenerative and rare diseases.

QPS is a global contract research organization (CRO) providing discovery, preclinical and clinical drug development services since 1995. Our mission is to accelerate pharmaceutical breakthroughs across the globe by delivering custom-built research services. An award-winning leader in the CRO industry, QPS is known for proven quality standards, technical expertise, a flexible approach to research, client satisfaction and turnkey laboratories and facilities.


Science Exchange logo

Why Choose Us?

  • Customer satisfaction is our absolute priority
  • Your timeline is our timeline
  • Every study is custom-built
  • Scientific input to study design and data interpretation
  • Extensive experience with virtually all drug targets and treatment types
  • Wide range of validated models and techniques for comprehensive compound tests from a single source
  • AAALAC certification ensures highest quality standards


Prof. Dr. Ludwig Aigner

Latest News

In vitro assessment of axonal injury and growth using DRG neurons

Pathological changes in axonal function are well known features of many neurological disorders. Nowadays, stimulation of axonal repair after injury is an important aspect for the development of new therapeutic drugs.

The use of microfluidic chambers (MFCs) can provide unique insights into the axonal compartment independent of the soma. We thus established a model of axonal injury and re- growth in MFCs using dissociated DRG neurons from adult wild type mice. Already 3 days after seeding neurons into the somal side of the MFC, axons start to cross the microgrooves. After 5 days in culture, axons have completely crossed the grooves and built a beautiful network on the axonal side (Fig 1 A). Neurons can then be axotomized by fast removal of the medium from the axonal compartment (Fig. 1 B).

Developmental compounds can be selectively applied to either axonal or somal side alone, by using a hydrostatic pressure difference between the somal and the axonal chamber. The effect of NGF application to the axonal side in comparison to vehicle-treated cells was quantitatively analyzed, showing a significant increase of branching and axonal length, while no impact on the number of crossing axons could be observed (Fig.2).

axonal injury and growth

Figure 1. Representative images of DRG neurons from adult wild type mice in microfluidic chambers. DRG neurons were cultured until DIV5 and fixed before (A) and after (B) mechanical axotomy. Tubulin III (TubIII) labeling to visualize neurons and their extensions and DAPI to counterstain for nuclei. Crossing axons on the axonal side before axotomy (A) and removal of axons by axotomy (B). Scale Bar 1,000 µm.

figure 2

Figure 2. Effect of NGF treatment on axonal re-growth 24 h after axotomy. The following marker were assessed using image-based quantification of total number of crossing axons (A), the number of branch points per crossing axon (B) and the total length of all axons (C); n = 4 wells per group. Unpaired t-test; *p<0.05; **p<0.01. VC: vehicle control; NGF: nerve growth factor.

Newsletter Archive